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Abstract. Melanins are a group of macromolecular pigments 
formed as a result of oxidative polymerization of phenolic and 
indole compounds. They are considered the most common, 
heterogeneous, resistant and evolutionarily oldest pigments 
found in nature. Melanins occurrred very early in the evolu-
tion of various groups of organisms. They have already been 
found in dinosaur, bird and primitive cephalopod fossils. To-
day, melanins are found in every kingdom of living organisms 
and play an important role in the processes of reproduction, 
thermoregulation, chemoprotection and camouflage. In addi-
tion to the important functions they perform in organisms, they 
exhibit a different chemical structure and are characterized by  
a wide range of colors, from black-brown to yellow-red. Dif-
ferences in chemical structure have become the criterion for di-
viding melanins into four groups, i.e. eumelanin, allomelanin, 
pheomelanin and neuromelanin. Production of melanins is char-
acteristic for many microorganisms, including free-living Azoto-
bacter bacteria. The genus Azotobacter comprises eight species 
and only Azotobacter bryophylli does not produce pigments. 
Azotobacter chroococcum, the most abundant in soils all over the 
world, produces a dark brown melanin pigment non-diffusible 
into the substrate. Melanins synthesized by this species of bacte-
ria increased the growth of some plants and detoxification of soils 
and waters polluted with heavy metals. In addition, the method 
of obtaining melanin produced by A. chroococcum is simple and 
relatively cheap compared to the cost of obtaining synthetic mela-
nins, which gives the opportunity to conduct further research on 
the use of this pigment in biotechnology and molecular biology.
In work it was describe the physicochemical properties, vari-
ous functions and possible applications of bacterial melanins in 
various industries. The publication also summarizes the current 
knowledge on some properties and the possibility of use  in bi-
oremediation of soils and waters contaminated with heavy metals 
melanins synthesized by Azotobacter chroococcum.
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INTRODUCTION

 Natural pigments are extracted from biological mate-
rial of plant, animal and microbial origin (Stolarzewicz et 
al., 2012). Many bacterial species can synthesize pigments. 
Colorful bacteria outcompete species and mutants that do 
not produce pigments. In the case of bacteria, the benefits 
of pigment production are the acquisition of energy and 
food, the extraction of ferric from the habitat, protection 
from the harmful effects of high-concentration visible light, 
ultraviolet radiation, extreme temperatures and compounds 
with antibacterial effects. It is noteworthy that some pig-
ments have antibiotic activity as well as virulence factors 
for pathogenic bacteria. The pigmentation of microorgan-
isms is essential in clinical diagnostics, as it facilitates spe-
cies identification (Wolska et al., 2010).
 Melanins are a group of macromolecular, black or 
brown in color pigments formed as a result of a multi-step 
oxidative polymerization of phenolic and indole com-
pounds. The most common substrate for the biosynthesis of 
these compounds is the amino acid tyrosine, dihydroxyin-
dole, dihydroxynaphthalene and catechol. Melanins exhib-
it specific physical and chemical properties. They reduce 
many compounds, including silver ions, ferrocyanide, and 
potassium permanganate, have UV absorption and scat-
tering abilities, exhibit antioxidant properties, and are ex-
cellent chelators of metal cations (Saud, Alaubydi, 2016). 
Production of melanins is characteristic for many microor-
ganisms, mainly soil bacteria, some parasitic bacteria and 
fungi, and marine algae. Among soil bacteria, melanins 
are produced by actinomycetes (some species of Strepto-
myces (Paget et al., 1994)), bacterial species belonging to 
the genus Azotobacter (Shivprasad, Page, 1989; Aquilanti 
et al., 2004a), Azospirillum (Sadasivan, Neyra, 1987) and 
some strains of Rhizobium (Hynes et al., 1988). Among 
marine algae, Shewanella (Turick et al., 2008), Shewanella 
colwelliana (Kotob et al., 1995), and Marinomonas medi-
terranea (Lopez-Serrano et al., 2004) possess this ability. 
On the other hand, among pathogenic bacteria, melanin is 
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most often produced by species, i.e., Burkholderia cepacia 
(Zughaier et al., 1999), Klebsiella pneumoniae (Hawkins, 
Johnston, 1988), Legionella pneumophila (Baine et al., 
1978), Mycobacterium leprae (Prabhakaran et al., 1968), 
Proteus mirabilis (Agodi et al., 1996) and Vibrio cholerae 
(Coyne, Al-Harthi, 1992).
 Bacteria belonging to the genus Azotobacter are free-
living, strict aerobes that require oxygen. Of the species of 
this genus, Azotobacter chroococcum is the most widely 
distributed in soils worldwide, and it probably also domi-
nates soils in Poland (Döbereiner, 1995; Martyniuk, Mar-
tyniuk, 2003; Lenart, 2012). Colonies of these bacteria are 
large, convex with an irregular shape, mucilaginous, and 
darkening after several days of culture, which is associated 
with the production of a dark brown melanin pigment non-
diffusible into the substrate. The aspects of melanin pro-
duction by Azotobacter chroococcum have been described 
in quite some detail in the literature (Thompson, Skerman, 
1979; Shivprasad, Page, 1989; Gospodaryov, Lushchak, 
2011; Banerjee et al., 2014).
 The paper systematizes current reports on the condi-
tions of melanin production by bacteria, including by 
Azotobacter chroococcum, some of its physicochemical 
properties and possible applications in biotechnology. The 
work presents, in a synthetic form, the current state of 
knowledge in this area.

PHYSICOCHEMICAL PROPERTIES OF MELANINS

 Melanins are a diverse group of pigments synthesized 
in living prokaryotic and eukaryotic organisms by hy-
droxylation and polymerization of organic compounds. 
Melanin production is one of the universal features of the 
adaptation of living organisms to changing environmental 
conditions. The presence of different types of melanin in 
representatives of almost every major taxon indicates the 
evolutionary significance of melanogenesis (Plonka, Gra-
backa, 2006).
 All the pigments belonging to the melanin group are 
characterized by their high molecular weight, irregular 
and three-dimensional amorphous structure and negative 
charge. There is no single, strict definition of melanins 
due to the high heterogeneity of these compounds (color, 
molecular weight, composition, origin and function). The 
most commonly used definition is: „heterogeneous poly-
mers formed by the oxidation of phenolic compounds and 
further polymerization of intermediate compounds and 
resulting quinones” (Solano, 2014). The diverse and het-
erogeneous structure of melanins is due to the ubiquitous 
sources of their origin. In addition, melanin’s physico-
chemical properties make it even more difficult to accu-
rately identify and characterize its structure (Pralea et al., 
2019). Among the characteristic qualities of melanins that 
allow them to be distinguished from other compounds are 
insolubility in most common solvents, loss of color under 
oxidizing agents, resistance to degradation under cold and 

hot acids, ability to directly reduce ammoniacal AgNO3 
solution, solubility in alkali solutions, positive reaction to 
polyphenols (Piattelli et al., 1965; Nicolaus, 1968; Nosan-
chuk et al., 2015; Pralea et al., 2019). A dark color usually 
characterizes melanins, but the palette ranges from black-
ish brown to yellowish red. This variation in color and hue 
is due to different abilities to absorb and scatter light. Ac-
cording to literature data, the smaller the melanin granules, 
the lighter their coloration (Prota, 1992).

TYPES OF MELANINS

 The melanin-producing ability is widespread among 
microorganisms. From a chemical point of view, the com-
mon feature of microbial melanins is that they are the 
product of oxidative polymerization of various phenolic 
substances (Przemyslaw, May, 2006). Melanins are het-
erogeneous polymers of dihydroxyindole (DHI) and dihy-
droxyindolecarboxylic acid (DHICA) monomers linked by 
heterogeneous non-hydrolyzing bonds (Crippa et al., 1989; 
Cheng et al., 1994). Differences in chemical structure have 
become the criterion for dividing melanins into four groups 
(Table 1), i.e.:
 – eumelanins – blackish brown insoluble pigments 

formed by the oxidation of tyrosine (and/or phenylalanine) 
to 3,4-dihydroxyphenylalanine (DOPA) and dopaquinone, 
which are further converted to 5,6-dihydroxyindole or 
5,6-dihydroxyindole-2-carboxylic acid. Eumelanins are 
most common in animals and humans (Langfelder et al., 
2003; Plonka, Grabacka, 2006),
 – allomelanins – are the least studied and the most het-

erogeneous group of polymers formed by the oxidation 
of di-hydroxynaphthalene or tetrahydroxynaphthalene to 
phaeomelanin, γ-glutamine-4-hydroxybenzene, catechol 
and 4-hydroxyphenylacetic acid. Plants, fungi and mi-
croorganisms produce allomelanins. This group includes 
the following subgroups of melanins: catechol melanin 
(in plants), DHN melanin and phaeomelanin (in bacteria 
and fungi) (Nicolaus et al., 1964; Funa et al., 1999; Jacob-
son, 2000; Plonka, Grabacka, 2006; Cordero, Casadevall, 
2017),
 – pheomelanins – yellow-red pigments soluble in alka-

line solutions. This variety of melanins is formed by bio-
chemical transformations involving a change in eumelanin 
synthesis. The onset of synthesis of both compounds is 
similar; however, in the case of pheomelanin production, 
3,4-dihydroxyphenylalanine undergoes cysteinylation, ei-
ther directly or via glutathione. Cysteinyl-3,4-dihydroxy-
phenylalanine, the final product of the reaction, further 
polymerizes into various benzothiazine derivatives. This 
is a type of animal melanin found in red hair, freckles or 
feathers (Nappi, Ottaviani, 2000; Plonka, Grabacka, 2006),
 – neuromelanins – dark pigments synthesized in human 

neurons by oxidation of dopamine and other catechola-
mine precursors (Fedorov et al., 2005).

and and
and
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ECOLOGICAL AND PHYSIOLOGICAL ROLE  
OF BACTERIAL MELANINS

 The capability of microorganisms to produce pigments is a trait acquired in the 
course of evolution, increasing their survival opportunities in the external environ-
ment. The pigments are designed to protect microorganisms from the adverse ef-
fects of various physicochemical factors (Liu, Nizet, 2009). Due to the multifunc-
tional nature of melanins, they are used as a) antioxidants and radical scavengers 
(Keith et al., 2007; Ju et al., 2011; Le Na et al., 2019), b) photo protectors that 
effectively absorb and dissipate solar radiation in the form of heat (d’Ischia et al., 
2015), (c) absorbers that chelate metals and bind organic compounds (Banerjee et 
al., 2014; Karlsson, Lindquist, 2016; Tran-Ly et al., 2020a), and (d) organic semi-
conductors (Bothma et al., 2008). Besides, these pigments protect cells from hy-
drolytic enzymes and the enzymes themselves from proteases (Valeru et al., 2009; 
Saud, Alaubydi, 2016). In addition to performing the earlier functions, melanin 
is considered a biocompatible and environmentally friendly compound, as it is 
naturally synthesized by most living organisms (Tran-Ly et al., 2020b). The link 
between melanin synthesis and increased virulence of pathogenic bacteria has 
been widely reported in the literature (Nosanchuk, Casadevall, 2003; Plonka, 
Grabacka, 2006). The pigment contributes to the virulence of microorganisms 
by decreasing the susceptibility of pathogens to host defense mechanisms and 
influences the host immune response (Nosanchuk, Casadevall, 2006). Melanins 
synthesized by water-dwelling Vibrio cholerae bacteria protect cells from high 
temperature and osmotic stress. The protective role of melanins under osmotic 
stress is related to their ability to absorb K+ and Na+ cations, which prevents cell 
dehydration (Coyne, Al-Harthi., 1992). A study by Valeru et al. (2009) shows 
that the color mutant of Vibrio cholerae has enhanced infectivity and increased 
resistance to UV radiation due to the absorption of the energy of this radiation by 
melanin. On the other hand, Patel et al. (1996) showed that the melanin of Bacillus 
thuringiensis increases the toxicity of this bacterium to insects while protecting it 
from the adverse effects of UV radiation. In addition, resistance B. thuringiensis 
to UV radiation has been linked to the presence of melanin in the sheaths of en-
dospores, while adsorption or incorporation of melanin into crystals of the toxic 
protein formed during sporulation increases the stability of the insecticide.
 In turn, the ability of melanins to bind heavy metals is associated with nu-
merous carboxyl, phenolic, hydroxyl and amino groups in their structure, which 
are sites of binding or adsorption for metal ions. This can reduce the effective-
ness of antifungal and antibacterial agents containing metal ions in eliminating 
melanin-producing microorganisms (Patel et al., 1996).
 The literature has reported the potent antioxidant properties of melanins and 
their ability to stabilize free radicals and bind unpaired electrons to increase the 
virulence of colored strains compared to non-colored strains. The above rela-
tion was observed in some colored strains of Burkholderia cenocepacia (Keith 
et al., 2007) and the plant pathogen Ralstonia solanacearum (Ahmad et al., 

2016). Piñero et al. (2007) found that 
melanin in the symbiotic bacterium 
Rhizobium etli plays a key role in the 
first stages of wart formation when 
the bacteria must deal with reactive 
oxygen species and phenolic com-
pounds produced by plants. These 
dyes are also involved in interac-
tions between bacterial biofilms and 
other organisms. Melanin secreted by 
Pseudoalteromonas lipolytica bio-
films prevents their colonization by 
clam larvae (Zeng et al., 2017) and in 
the case of a Vibrio cholerae biofilm 
increases the production of reactive 
oxygen species, thereby protecting 
the microorganism from predation by 
the amoeba species Acanthamoeba 
castellanii (Noorian et al., 2017).
 Melanins also acquire iron from 
the environment (Gospodaryov, 
Lushchak, 2011). Most bacteria ob-
tain this element through the produc-
tion of siderophores. Chatfield and 
Cianciotto (2007) described a system 
of ferric procurement by a bacte-
rium of the Legionella pneumophila 
species with the participation of py-
omelanin, associated with ferric re-
ductase activity. Melanins produced 
by bacteria belonging to the genera: 
Azotobacter, Burkholderia, Pseu-
domonas, Klebsiella, Serratia and Vi-
brio are also involved in iron acqui-
sition. The mechanism of melanin-
mediated ferric oxide reduction has 
been described in the Gram-negative 
marine bacteria Shewanella alge and 
the fungus Cryptococcus neofor-
mans. Among pathogenic bacteria, 
Pseudomonas aeruginosa can reduce 
ferric extracellularly with pyomela-
nin (Chatfield, Cianciotto, 2007). 
Some microorganisms, as a result of 
melanin synthesis, are able to survive 
in extreme environments by adapt-
ing to rapidly changing conditions. 
Examples of such microorganisms 
include Streptomyces cyaneofusca-
tus isolated from the desert soils of 
Algeria (Harir et al., 2018), Bacillus 
weihenstephanensis from the soils of 
northeastern Poland (Drewnowska et 
al., 2015), Lysobacter oligotrophicus 
obtained from Antarctic sites (Kimu-

Table 1. Melanins – types, source of origin and precursors (Tran-Ly et al., 2020).

Type of melanin Source of origin Precursor

Eumelanin animals, bacteria, fungi tyrosine, 3,4-dihydroxy-L-phenylalanine 
(L-DOPA)

Pheomelanin animals 5-S-cysteinyl-DOPA
Neuromelanin humans (brain) dopamine, 5-S-cysteinyl-dopamine
Catechol melanin plants catechol
DHNmelanin bacteria, fungi 1,8-dihydroxynaphtalene (DHN)
Phaeomelanin bacteria, fungi homogentisinic acid
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ra et al., 2015) and Aeromonas. salmonicida subsp. pectinolytica from heavily pol-
luted waters of the Matanza River in Argentina (Pavan et al., 2000).

SYSTEMATIC AFFILIATION AND PIGMENT  
PRODUCTION BY SPECIES OF THE GENUS  

AZOTOBACTER

 The genus Azotobacter was identified by Beijerinck in 1901. Bacteria of the 
genus Azotobacter belongs to the family Pseudomonadaceae, included in the sub-
class γ-Proteobacteria (Tchan, New, 1984; Özen, Ussery, 2012; Rubio et al., 2013; 
Robson et al., 2015). Currently, 8 species and 4 subspecies are known within the 
genus Azotobacter (De Smedth et al., 1980; Tchan, New, 1984; Aquilanti et al., 
2004b; Jin et al., 2020).
 – Azotobacter armeniacus (Thompson, Skerman, 1979),
 – Azotobacter beijerinckii (Lipman, 1904),
 – Azotobacter bryophylli (Liu et al., 2019),
 – Azotobacter chroococcum (Beijerinck, 1901),

 – Azotobacter chroococcum subsp. chroococcum (Jin et al., 2020),
 – Azotobacter chroococcum subsp. isscasi (Jin et al., 2020),

 – Azotobacter nigricans (Krasilnikov, 1949),
 – Azotobacter nigricans subsp. achromogenes (Thompson, Skerman, 1979),
 – Azotobacter nigricans subsp. nigricans (Howey et al., 1990),

 – Azotobacter paspali (Döbereiner, 1966),
 – Azotobacter salinestris (Page, Shivprasad, 1991),
 – Azotobacter vinelandii (Lipman, 1903).

 Of the species mentioned above, Azotobacter bryophylli is a colorless species, 
while the other species show the ability to produce melanin pigments of different 
colors (Table 2).

 –       –      

 –      

produce melanin is catechol. The 
most significant amounts of this 
pigment are produced under aero-
bic conditions because oxygen is 
one of the substrates of the enzyme 
polyphenol oxidase (Shivprasad, 
Page, 1989). Colonies of A. chroo-
coccum bacteria darken after sev-
eral days of culture due to the ac-
cumulation of dark brown melanin 
pigment that does not diffuse into 
the medium (Tchan, New, 1984; 
Aquilanti et al., 2004a) (Fig. 1). 
Melanin produced by this bacterial 
species belongs to the allomela-
nins group. Its synthesis does not 
require the presence of precursor 
molecules (e.g., tyrosine, dihy-
droxyphenylalanine, catechol) in 
the culture medium, as the bacte-
ria produce these as the cells age 
(Bortels, Henkel, 1968). Melanin 
is produced after about five days 
of culture, staining most liquid 
medium or forming dark halos 
around bacterial colonies on solid 
medium. Melanin formation has 
been studied in several strains 
of A. chroococcum (Shivprasad, 
Page, 1989; Herter et al., 2011; 
Banerjee et al., 2014). Gospodar-
yov, Lushchak (2011) observed in-
creased melanin production on the 
Ashby substrate with benzoic acid 
as a carbon source.
 On the other hand, Shivprasad, 
Page (1989) noticed an inhibitory 
effect of benzoic acid and a stimu-
lating effect of copper and iron 
ions on melanin production by 
Azotobacter chroococcum. They 
found that pigment synthesis was 
significantly enhanced at specific 
concentrations of copper sulfate 
in the medium. This is confirmed 
by a study by Gospodaryov, Lush-
chak (2011), who noted that cop-
per sulfate at a concentration of 
10 µM added to the substrate in-
creased melanin production, while 
higher concentrations inhibited the 
process. Excessively high concen-
trations of copper sulfate can in-
hibit bacterial growth and reduce 
the efficiency of this pigment syn-

Table 2. Pigments produced by species belonging to the genus Azotobacter (Tchan, New, 
1984; Page, Shivprasad, 1991; Aquilanti et al., 2004a; Liu et al., 2019).

Species Pigment
A. armeniacus brown-black pigment diffusing into the substrate
A. beijerinckii yellow to light brown pigment not diffusing into the substrate
A. bryophylli does not produce any pigment
A. chroococcum dark brown melanin pigment not diffusing to the substrate
A. nigricans brownish-black to reddish-purple pigment diffusing into the substrate
A. paspali yellow fluorescent pigment diffusing into the substrate
A. salinestris dark brown pigment not diffusing into substrate
A. vinelandii yellow-green fluorescent pigment diffusing to substrate

PROPERTIES OF MELANIN SYNTHESIZED  
BY AZOTOBACTER CHROOCOCCUM AND POSSIBLE APPLICATIONS.

 Free-living N2 assimilators of the genus Azotobacter have been the subject of 
much research for decades. They have become model microorganisms in studies of 
the biochemistry and energetics of N2 fixation, as well as in studies of the spatial 
structure and function of nitrogenase and the genetic regulation of biological, at-
mospheric nitrogen fixation (Paul, Clark, 2000). 
 The ability of these bacteria to produce melanins is widely reported in the 
literature (Tchan, New, 1984; Shivprasad, Page, 1989; Gospodaryov, Lushchak, 
2011; Banerjee et al., 2014). The compound used by Azotobacter chroococcum to 
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thesis. The studies discussed above show that melanogen-
esis in Azotobacter chroococcum is catalyzed by a copper-
dependent polyphenol oxidase.
 Like all melanins, melanin produced by A. chroococ-
cum is soluble in alkaline reagents (Shivprasad, Page, 
1989; Lin et al., 2005). Shivprasad and Page (1989) identi-
fied the dye extracted from A. chroococcum cells as mela-
nin based on the following characteristics: solubility in hot 
0.5 M NaOH and 1 M Na2CO3, and insolubility in cold wa-
ter, hot water, ethanol, chloroform, acetone and cold 0.5 M 
NaOH. Melanin synthesized by this species can bind cal-
cium ions. Alkalization of the medium containing calcium 
ions results in the formation of black flocs that are a mela-
nin complex with Ca(OH)2. The ability to bind calcium is 
not a distinguishing feature of A. chroococcum melanin, 
as this feature has also been described for melanins syn-
thesized by many different bacterial species (Bush, Simon, 
2007). Microscopic analysis of A. chroococcum colonies 
revealed the presence of calcium crystals of various sizes 
in brown halo zones around the bacterial colonies, in the 
colonies themselves, and in the mucus. The crystals were 
absent or sparse in unpigmented colonies of this bacterial 
species.
 Research conducted by Robson et al. (2015) showed 
the presence of 4 chromosomal genes (cum) encoding 
polyphenol oxidases in the genome of A. chroococcum 
strain NCIMB 8003. In addition, they found that the strain 
mentioned above of A. chroococcum is capable of produc-
ing carotenes in addition to melanin synthesis. Colonies 
of this strain on Burk’s substrate took on a brown-black 
color, while on nutrient agar, they took on a yellow-brown 
color. The chromosome of A. chroococcum NCIMB 8003 

contains 7 genes (crtZ, crtE, crtX, crtB, crtY, crtI, idi) en-
coding proteins, i.e., CrtE, CrtB, CrtY and CrtI involved 
in the synthesis of the carotene-like compound. The genes 
exhibit more than 60% identity with the orthologs of genes 
present in the genome of Pseudomonas stutzeri. At the 
same time, they were not detected in the genome of strain 
A. vinelandii DJ (Klassen, 2010). Melanins produced by A. 
chroococcum protect cells from hydroxyl radicals formed 
in the Fenton reaction, whereas carotenes are excellent an-
tioxidants (Shivprasad, Page, 1989; Robson et al., 2015).
 Literature data suggest that melanin, especially al-
lomelanin, has properties similar to those of soil humic 
substances, which promote the growth and yield of plants 
(Sutton, Sposito, 2005; Plonka, Grabacka, 2006; Mus-
colo et al., 2007). In their study, Gospodaryov, Lushchak 
(2011) observed the stimulating effect of purified melanin 
produced by A. chroococcum on such plants as lettuce, to-
mato, rapeseed and radish. The promotion of plant growth 
and development by melanin is also related to its ability to 
maintain water in the soil (Russo, Berlyn, 1990). In addi-
tion, the A. chroococcum strain is an excellent indicator of 
the presence of benzoic acid, and its salts in various sub-
strates since precipitation of synthesized melanin occurs 
only in the presence of benzoic acid. Melanins extracted 
from A. chroococcum cultures, thanks to their affinity for 
metals and high adsorption capacity, are used in the biore-
mediation of soils and waters contaminated with heavy 
metals (Rizvi et al., 2019).
 The research results available in the literature can con-
tribute to clarifying the ecological role of melanins pro-
duced by soil bacteria of the genus Azotobacter and the 
importance of melanization processes in nature.
Possible application of bacterial melanins in various indus-
tries
 Numerous bacterial species, including pathogens, are 
capable of producing melanin. This pigment exerts a va-
riety of functions, always beneficial to the host. Natural 
sources of melanin are currently being sought, among 
which melanins synthesized by microorganisms (bacteria, 
fungi) are the most promising. Their advantage is that they 
can be manufactured on a large scale, relatively cheaply, 
compared to the cost of obtaining synthetic melanins (Gon-
calvez, Pombeiro-Sponchiado, 2005). Melanins have been 
intensively studied for their properties and wide range of 
practical applications. Melanins produced by bacteria have 
been shown to effectively protect fibroblasts from UV radi-
ation, indicating that they could be used as an ingredient in 
sunscreens (Geng et al., 2008; Kurian, Bhat, 2018). They 
have also found applications in medical diagnostics as a 
contrast agent in the optoacoustic tomography (Liopo et 
al., 2015). The pigments in question exhibit semiconduc-
tor properties and conduct electricity, hence the potential 
for their use in many branches of technology. Synthetic 
DOPA-melanin has been used for in situ formation of 
semiconductor coatings (Lee et al., 2007). There are also 

Figure 1. 5-day-old colonies of the reference strain Azotobacter 
chroococcum DSM 281.

Editorial
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sunglasses on the market with lenses containing melanin, 
which absorb ultraviolet radiation, thereby protecting vi-
sion (Lopusiewicz, Lisiecki, 2016). Melanin produced by 
Shewanella oneidensis increases electricity production in 
microbial fuel cells thanks to its ability to transport elec-
trons (Turick et al., 2010). Research in recent years has 
drawn attention to the possibility of using melanins in in-
novative nanotechnologies, such as synthesising crystal-
line, flexible and thermostable nanocomposite films used 
in biomedicine (Kiran et al., 2017). The applicability of 
melanins in molecular biology is only feasible if pigment 
synthesis is regulated by a single gene or operon that serves 
as a marker for plasmid transfer from one organism to an-
other. This is an excellent alternative to markers such as 
β-galactosidase or proteins responsible for antibiotic resist-
ance (Tseng et al., 1990). From a medical point of view, 
melanogenic microorganisms are model microorganisms 
used to study the effects of various factors on melanin 
production. The anti-cancer properties of allomelanins are 
known (Kamei et al., 1997), as well as the inhibitory ef-
fect of melanins on HIV proliferation (Montefiori, Zhou, 
1991; Sidibe et al., 1996). Melanin extracted from Pseu-
domonas balearica demonstrates antimicrobial activity 
against Staphylococcus aureus, Escherichia. coli, Candida 
albicans (Zerrad et al., 2014). Thanks to their affinity for 
metals and high adsorption capacity, melanogenic bacte-
ria can be used in bioremediation. It is recommended to 
detoxify soils or waters contaminated with heavy metals 
using melanin-producing microorganisms such as Azoto-
bacter chroococcum (Rizvi et al., 2019) and Pseudomonas 
stutzeri (Thaira et al., 2019; Manirethan et al., 2018). In 
turn, melanin extracted from E. coli cultures has been used 
successfully for the bioremediation of drug-contaminated 
wastewater (Gustavsson et al., 2016).

CONCLUSIONS

 Melanins are compounds with unique attributes. The 
ability to produce the pigment group mentioned above is 
widespread among bacteria, and their role is complex and 
multifaceted. Melanins protect bacterial cells from exter-
nal environmental factors, i.e. extreme temperatures, UV 
radiation, oxidizing agents, heavy metals and antibiotics. 
Melanins of natural origin synthesized by melanogenic mi-
croorganisms (bacteria, fungi) are increasingly being stud-
ied and applied. The advantage of natural melanins over 
synthetic ones is that they can be manufactured on a large 
scale by relatively simple and inexpensive methods. Mela-
nins are intensively studied for their properties and wide 
range of practical applications. For example, obtaining 
high-performance microbial melanins involves selecting 
suitable microorganisms that can produce melanin extra-
cellularly from an exogenous substrate and improving the 
metabolic process by adding tyrosine and copper to the cul-
ture substrate. Melanins produced by bacteria have found 

applications in modern medicine, biotechnology, cosme-
tology and technology. From an agricultural perspective, 
these pigments can be used to promote plant growth and 
development and in the bioremediation of soils and waters 
contaminated with heavy metals. However, these pigments 
still hold many secrets and given their unique properties 
and role, they fully deserve continued research into new 
possibilities for their application.
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