
3

s

Abstract. Worldwide, there is a growing interest in the use of vi-
sible and near-infrared spectroscopy (VIS-NIRS) to characterise 
soils. The method is largely used in the agricultural (foods and 
cereals) sector but is only in the research phase for soil analysis 
despite the fact that it is a suitable tool for precision agriculture.  
A quick search at the Web of Science (WoS) Core Collection con-
firmed that the method, although very popular in different fields 
of research, is still new within soils studies in Poland. Furthermo-
re, the method only occasionally involved arable soils. This paper 
briefly describes how VIS-NIRS is used in Poland and demon-
strates with a few examples the main advantages of the method 
over classical analytical method for mineral soil analysis. As an 
illustration of the method potential, soil organic carbon (SOC) 
and clay content were predicted using partial least-square (PLS) 
regression at field and national scale. The models were robust at 
field scale and revealed a high agreement between measured and 
predicted values with e.g. r2 = 0.65 and RMSEv = 0.11% for SOC. 
Prediction results at national scale are promising but less robust. 
VIS-NIRS is a suitable technique to estimate several soil proper-
ties at different scales and at a relatively low cost.

Keywords: Visible and near-infrared spectroscopy, soil spectral 
library, soil organic carbon, clay content

INTRODUCTION

 Visible and near-infrared spectroscopy (VIS-NIRS) is  
a method of choice in the agricultural sector and is actively 
used to determine organic compounds (García-Sanchez et 
al., 2017). Moreover, it is an efficient technology to inve-
stigate soils. The method has been proved effective for soil 
monitoring purposes (Nocita et al., 2015), soil mapping 
(Debaene et al., 2014a), or precision agriculture (Christy, 
2008). In the last few years, the literature involving VIS-
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-NIRS has greatly increased in number and in the diversity 
of the applications involved. Nevertheless, soil analysis 
with the method is still a challenge due to the complexi-
ty of the material matrix (Tamburini et al., 2017). In the 
field of soil sciences, most of the studies have focused on 
soil organic carbon (SOC) content prediction (Ladoni et 
al., 2010) because the accurate estimation of SOC is of 
particular interest due to its potential applications for car-
bon sequestration and soil quality research. Therefore, of 
old, there were many attempts to assess soil organic matter 
at low cost (e.g. Gregorich et al., 1994). Lately, many ef-
forts are made to develop global, continental or national 
spectral library. A global spectral library (ICRAF, 2015) 
is described in details in Viscarra Rossel et al. (2016). It 
contains more than 23,000 spectra with several soil pro-
perties available. For Europe, the LUCAS spectral library 
(Stevens et al., 2013) is composed of 20,000 samples. The-
re are also few national library e.g. Australia, Denmark, 
or France (Gogé et al., 2012; Knadel et al., 2012; Viscarra 
Rossel and Webster, 2011). The basis of VIS-NIRS is that 
in the NIR region, the radiation (light) is absorbed by the 
different covalent chemical bonds (e.g. C-H, N-H, O-H) of 
compounds present in the sample. The absorption intensity 
is related to the concentration of these compounds. There-
fore, a NIR spectrum contains information about the orga-
nic composition of that sample. Physical properties (e.g. 
soil texture) are also related to the spectrum since the shape 
of the spectrum is affected by light reflection and scattering 
and also by clay content and mineralogy. In the VIS region 
(350–780 nm), most of the spectral variation between soil 
samples are due to organic matter and iron oxides. In the 
NIR region (781–2500 nm), the spectrum consists of over-
tones and combination bands of fundamental molecular 
absorptions from the mid-infrared region.
 With the world’s growing population, there is a need 
for a more productive and sustainable agriculture (Bongio-
vanni and Lowenberg-DeBoer, 2004). Moreover, the incre-
ase of population is also related to environmental problems 
such as soil pollution or global warming. Precision agricul-
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ture (PA) with the use of near-infrared sensors is one of the 
responses to these problems. Despite the fact that SOC has 
been the “core” of VIS-NIRS predictions and that the me-
thod has proved to be robust in some conditions, very few 
attempts have been made at homogeneous (with minimal 
SOC variations) soils like those from Baborówko fields. 
The aim of the paper is to quickly review the development 
of VIS-NIRS for agricultural soil analysis in Poland and 
through few examples illustrate how the method can be 
used to predict SOC and clay content at field and national 
scale by using the Polish Soil Spectral Library (PSSL). 

MATERIAL AND METHODS

Web of Science query

 A limited search at the Web of Science (WoS) Core 
Collection was undertaken (as of 01.06.2019) to see if 
the method is still new in the field of soil sciences and as  
a mean to underline the originality of this study in Poland. 
To simplify the analysis, the WoS query was run with two 
mandatory terms: (a) near-infrared and (b) soil with at le-
ast one author having a Polish address. The same query 
was done also with no country restriction (world) and with 
France to see the contribution of Poland on the field. To 
compare with other fields of research, the same query (wi-
thin the same time laps) was undertaken with common stu-
dies in soil sciences such as soil + erosion, soil + contami-
nation then restricted to polycyclic aromatic hydrocarbon 
(soil + PAH) instead of near-infrared.

Building of the Polish soil spectral library

 To build the soil spectral library, more than 2200 sam-
ples from the IUNG-PIB soil database were scanned using 
the Veris VIS-NIR spectrophotometer in bench top mode 
(Veris Technologies, USA). The samples were legacy sam-
ples (1700 samples) but also samples coming from several 
monitoring or investigations carried out in the IUNG-PIB 
experimental stations (500 samples). All samples were 
oven dried, ground, and sieved. For all these samples, 
SOC and clay content were available. Tiurin determination 
method (SOC) was used for all 500 Baborówko samples 
and most of PSSL samples (some were determined by CN 
analyser). Clay content was determined by laser diffracto-
metry for Baborówko samples. Hydrometer method was 
used to determine clay in more than 70% of PSSL samples. 
Samples were placed against the face of the sapphire win-
dow in a sample holder and scanned in the 350–2220 nm 
range. Great care was taken to scan all samples with a simi-
lar procedure. A description of the scanning methodology 
can be found in (Debaene et al., 2014b). Next, the spectrum 
from each sample was matched with its chemical or physi-
cal properties (chemical analyses) to obtain a matrix. That 
matrix was later subjected to multivariate analysis.

Calibration and sample selection

 To illustrate how the method works at field scale, 200 
samples from Baborówko experimental station were ran-
domly selected from the PSSL. Spectra were pre-processed 
with standard normal variate (SNV) and Savitzky-Golay 
derivatives. Partial least square regression (PLSR) was 
used as a multivariate calibration method for all the follo-
wing models. The PLSR determines the best relationship 
between chemical or physical soil properties (dependant 
response – Y) and spectra (predictor variable – X). The 
method combines the features of principal component 
analysis and multiple linear regression. The 200 samples 
were divided in two datasets: 100 calibration samples and 
100 validation samples. K-means clustering algorithm 
was used for sample selection, according to Debaene et 
al., (2014a) procedure. All analyses were performed using 
Unscrambler X 10.3 software (Camo, Norway).
 To predict SOC and clay content at national scale with 
PLSR, 1500 samples from the PSSL were used (topsoils 
0–30 cm). Samples were selected to encompass typical Po-
lish arable soils. Soils with high SOC or clay content were 
not considered (e.g. SOC > 5% and clay > 10%). A prin-
cipal component analysis (PCA) on the PSSL spectra was 
used to detect and remove outliers. The remaining samples 
were sorted into ascending order of analyte content (SOC 
and clay) and then randomly divided into two datasets for 
calibration and validation (992 and 500 respectively before 
outlier detection).

RESULTS

Web of Science query

 The results of the different queries are presented in Ta-
ble 1. A paper from Poland means that at least one author 
had a Polish affiliation at the time of publication. Several 
times, there were cases of foreign researchers with two af-
filiations or Polish researchers abroad but also with two 
affiliations. One can see that NIR studies are very scarce in 
Poland and also not as popular in the world (2,824 papers) 
as soil contamination or erosion studies (± 35,000 papers 
each).
 The treemap of results with Polish authors (affiliation) 
according to WoS is presented in Figure 1. A closer look at 
these results revealed that among the 34 papers, only seven 
papers are involved with soil studies. Ten papers are not 
directly related to soil science (NIR reflectance analyses of 
leaf, roots, lignite-humus mixtures, plant-based food and 
satellite imaging). Seven papers are focusing on the theore-
tical basis of NIR light reflectance in relation to soil surface 
roughness and are not involved with soil analyses or with 
the prediction of any soil properties (e.g. Cierniewski and 
Verbrugghe, 1997). There is one review (Chodak, 2008) of 
the possible uses of the method in environmental studies 
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Table 1. WoS query results.

Mandatory terms
Variable NIR + soil Contamination + soil PAH + soil Erosion + soil
Poland 34 1,261 178 375
France 275 1,690 339 1,709
World 2,824 35,348 4,963 34,343
Share (world %) 1.2 3.57 3.59 1.09
ratio Pl/F 0.12 0.75 0.53 0.22

Results are in number of papers. Share is the percentage of papers with at least one Polish affiliation in %. Ratio Pl/F is the ratio of Polish to French 
papers.

and therefore also soils. The remaining articles are 
mostly focusing on soil properties prediction. The 
seminal paper related to soil properties predictions 
for Poland is from 2003 (Chodak et al., 2003), and 
like two-third of these papers, investigated forest 
soils. In that paper, the authors have successfully 
predicted many soil properties of 5 soil cores in 
central and northern Germany. Only four papers 
(Debaene et al., 2014a; Debaene et al., 2014b; Ba-
jorski et al., 2016; Siebielec et al., 2004) studied 
arable soils. Many papers were authored by Polish 
researchers abroad e.g. (Chodak et al., 2004; Sie-
bielec et al., 2004) due to the lack of instruments at 
that time in Poland.

Prediction of SOC and clay content at field scale

 Figure 2 presents the box plot of reference 
(measured) and predicted values for SOC and clay 

Figure 1. Treemap of query results for „near-infrared + soil” with at least one Polish affiliation. Some papers belong to more than one 
categories.
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Figure 2. Box plots of measured and predicted SOC and clay content  
values (Baborówko – field scale).

The cross represents the mean; the line through the box is the median.
SOC_ref – measured SOC; SOC_pred – predicted SOC; 
clay_ref – measured clay; clay_pred – predicted clay. 
Blue circles are outliers.
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Remote sensing allows the mapping of the Earth’s surface from satellite or 
airborne systems, while proximal sensing systems collect detailed information 

near the surface.

Table 2. Calibration and validation results for SOC and clay con-
tent prediction (Baborówko – field scale).

r2 RMSE 
[%] r2 RMSE 

[%]
SOC Clay

Calibration (n = 100)
Raw 0.73 0.14 0.87 0.23
SNV 0.78 0.14 0.78 0.30
SG 0.77 0.13 0.88 0.22
Validation (n = 100)
Raw 0.65 0.11 0.77 0.33
SNV 0.33 0.63 0.65 0.45
SG 0.61 0.15 0.47 0.51

Raw – raw spectra, SNV – standard normal variate, SG – Savitzky-Golay 
derivative

Figure 3. Measured vs. predicted SOC (A) and clay content (B) for Baborówko samples. Validation models with raw spectra.

content for Baborówko samples (validation dataset). The 
results are very similar for means, medians, maximum and 
minimum values but the predicted clay content presents  
a reduced interquartile range. The results from calibration 
and validation for SOC and clay PLS prediction using raw 
spectra, SNV spectra and SG spectra are presented in Table 
2. The best results were obtained with raw spectra for both 
properties with very low root mean square errors of predic-
tion (0.11% for SOC and 0.33% for clay). Pretreatments of 
the spectra did not improve the prediction but rather lowe-
red the robustness of the models.
 The predicted vs. reference values obtained at field le-
vel are presented in Figure 3a and 3b.

PSSL and SOC and clay prediction (National scale)

 Figure 4 presents the Hotelling T2 ellipse with 95% 
confidence interval on the score plot from the PCA analysis 
of the PSSL spectra. The Hotelling T2 is a linear function of 
the leverage that can be compared to a critical limit accor-
ding to an F-test. This statistic is useful for the detection of 
outliers at the modelling or prediction stage. Two hundreds 
samples were considered as outliers (outside of the ellipse 
or with SOC > 5% and clay > 10%) and therefore removed 
from the modelling. These are samples not representative 

of Polish arable soils. After outliers detection, 892 samples 
were used for calibration and 400 samples for validation. 
The two first components (PC-1 and PC-2) concentrate 
99% of data variation. Samples outside the boundaries 
of the Hotelling ellipse were considered as spectroscopic 
outliers. Samples are clustering according to spectral simi-
larities due to e.g. SOC or clay content.
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 The best models were obtained using SNV pre-proces-
sing. Modelling results for SOC were the following: r2 = 
0.69 and RMSE = 0.60% for calibration and r2 = 0.66 and 
RMSE = 0.61% for validation. Prediction results for clay 
content were similar: r2 = 0.73 and RMSE = 0.91% for ca-
libration and r2 = 0.71 and RMSE = 0.88% for validation. 

DISCUSSION

 The WoS analysis has revealed the relative novelty 
of the method in the field of soil sciences, especially in 
Poland were only 34 papers were published until now. 
Many papers were authored by Polish researchers abroad 
or foreign researchers in Poland but with two affiliations. 
Moreover, researches involving VIS-NIRS represent less 
than 3% of e.g. the number of studies concentrating on soil 
contamination or 19% of soil PAH’s studies in Poland. The 
results also highlighted a common misunderstanding con-
cerning the method: the difference between proximal and 
remote sensing (see Anastasiou et al., 2018). More than 
half of the 34 papers involved remote sensing studies and 
not VIS-NIRS studies. The other half of the papers are de-
aling with forest soils and only four papers are discussing 
arable soils in relation with VIS-NIRS which support the 
utility of the present work and explain the growing interest 
for the method in many Polish Universities and Institutes. 
This also justifies further investigations are needed since 
precision agriculture is mostly focusing on arable mineral 
soils.
 Prediction results at the field scale (Baborówko study) 
have confirmed the robustness of the method for SOC and 

PC-1 (96%)
-8 -6 -4 -2 0 2 4 6 8 10 12 14 16 18 20

P
C

-2
(3

%
)

-5

-4

-3

-2

-1

0

1

2

3

4

Figure 4. Spectra PCA-scores with Hotelling T2 ellipse (95% confidence interval).
 PC – principal component 

clay prediction. One hundred samples were used for ca-
libration to predict 100 independent (new) samples. This 
means that after building the calibration model, the ana-
lytical costs for the determination of SOC and clay were 
reduced by 50%. Moreover, once a model is robust and 
can be used in a more routine approach, all new samples 
only need to be scanned and incorporated in the model for 
prediction. This further decrease overall cost analysis. It 
was determined by Nduwamungu et al., (2009) and Deba-
ene et al., (2014a) that for Canada, France, and Poland the 
costs are reduced by 63%, 94%, and 80% respectively in 
comparison to certified laboratory using classical methods. 
After an initial relatively high cost for calibration since 
classical laboratory analyses are needed, the more samples 
predicted with a model, the lower the costs will be. In the 
case were a model is robust enough to be used in routine 
analysis like it is the case in the cereal industry (Delwiche, 
2004), the costs are drastically lowered. Unfortunately, soil 
is a complex material and such a model is not relevant at 
larger scale and probably will not be achieved soon or ever 
(Stevens et al., 2013). Nevertheless, local models (field or 
farm level) are applicable and proved robust enough for 
precise determination of several soil properties (Stenberg 
et al., 2010). These models can be used for mapping and 
precision agriculture. Comparable prediction results to Ba-
borówko field models were obtained by Dunn et al., (2002) 
for Australian topsoils of very similar composition and by 
Debaene et al., (2014a) on 400 samples from a georefe-
renced grid sampling investigation in Baborówko farm. 
Such very small prediction errors (RMSE) of 0.11% are 
seldom reported in the literature and that precision is simi-

G. Debaene – Visible and near-infrared spectroscopy in Poland: from the beginning to the Polish Soil Spectral Library
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lar to classical methods of SOC determination (Jankauskas 
et al., 2006). However, it is to be noticed that the small 
RMSE here is also related to the fact that the range of SOC 
values in both calibration and validation dataset is narrow. 
Despite the fact that spectra pre-processing is an impor-
tant chemometric tool (Rinnan et al., 2009), there were no 
improvement when pre-processing the spectra of Babo-
rówko samples. This was reported elsewhere (Freschet et 
al., 2011; Zornoza et al., 2008) for SOC or total C and N 
content. In the present case, this is probably due to the fiel-
d’s relatively homogeneous texture that preserved samples 
from excessive light scattering.
 The costs of developing a soil spectral library are eleva-
ted. This is the reason why the present PSSL was built using 
legacy samples from the IUNG-PIB soil database and sam-
ples from different IUNG-PIB experimental stations. This 
is probably why most of spectral library are developed that 
way (Viscarra Rossel and Webster, 2011). Using legacy 
soil databases is associated with errors related to the fact 
that several analytical technics can be used for soil analysis 
e.g. SOC can be analysed by Tiurin method or by Walkey-
-Black method (Soriano-Disla et al., 2014). This was the 
case here where samples from the PSSL were analysed 
for SOC and clay with different methods. This can expla-
in why the RMSE errors and robustness of the prediction 
models are lower than Baborówko models where only one 
method of determination was used. Probably, using only 
the samples analysed with one method for SOC or clay 
content could greatly improve the predictions but would 
be less realistic. Besides, the larger the scale of investiga-
tion, the higher prediction errors are since the range of soil 
properties values is, and the range of soil types involved is 
wider (SOC content = 2.15% and clay content = 3.11% in 
this dataset). Therefore, a large spectral database increases 
the chances of having non-representative validation sam-
ples. That problem was relatively bypassed by choosing 
only typical samples for Polish arable soils and deleting 
samples with extreme SOC and clay values. Incorporating 
these samples in the model would probably have increased 
RMSE greatly. Nevertheless, when compared with other 
large-scale studies (e.g. Brown et al., 2005; Gogé et al., 
2012) the obtained errors are smaller. The PSSL is a new 
national spectral library that is expanding the range/choice 
of the available national libraries e.g. Denmark, France, or 
Australia (Gogé et al., 2012; Knadel et al., 2012; Viscarra 
Rossel and Webster, 2011).
 The building of the Polish Soil Spectral Library is an 
ongoing project and new samples are regularly incorpora-
ted and calibration models updated to obtain more robust 
VIS-NIRS models at national scale. The PSSL could be 
used as a tool for e.g. monitoring carbon stock, an impor-
tant factor of climate change. Other soil properties are also 
investigated and prediction models developed.

CONCLUSIONS

 The present paper illustrated the use of a large-scale 
spectral library (PSSL) to predict two of the main soil pro-
perties (SOC and clay content) in arable mineral soils at 
field and national scale. The method is useful for mapping 
and precision agriculture as well as soil monitoring. The 
main conclusions are:
 1. The method is still relatively new in Poland for the 
determination of soil properties as was demonstrated by 
the Web od Science query when compared to France or the 
entire world. More investigations are needed in that field of 
research with more soil types and at different scales.
 2. The robustness of the method is better at field or 
farm scale than at national scale and with precision compa-
rable to classical analytical techniques. However, the main 
advantages over classical methods is the rapidity, the low 
cost of analysis (50% to 90% cheaper) and the fact that no 
environmentally harmful chemicals are needed.
 3.  SOC and clay content can be predicted at different 
scales and with low errors at field scale.
 4. The building of a spectral library is a continuous 
process and including new samples with different range of 
values is a requirement to predict new soil types and obtain 
more robust prediction models.
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